安庆教育网
免费【人教版】2017-2018学年高中物理必修二检测全集(29份)含答案试卷分析解析详细信息
宜城教育资源网www.ychedu.com免费【人教版】2017-2018学年高中物理必修二检测全集(29份)含答案试卷分析解析模块综合检测(一)(时间:90分钟满分:100分)一、单项选择题(本大题共10小题,每小题3分,共30分.每小题中只有一个选项是正确的,选对得3分,错选、不选或多选均不得分)1.如图所示,从某高度水平抛出一小球,经过时间t到达地面时,速度与水平方向的夹角为θ,不计空气阻力,重力加速度为g.下列说法正确的是()A.若小球初速度增大,则θ减小B.小球在t时间内的位移方向与水平方向的夹角为θ2C.若小球初速度增大,则平抛运动的时间变长D.小球水平抛出时的初速度大小为gttanθ解析:小球落地时竖直方向上的速度vy=gt,因为落地时速度方向与水平方向的夹角为θ,则tanθ=gtv0,可知若小球初速度增大,则θ减小,故A正确;小球落地时位移方向与水平方向夹角的正切值tanα=yx=12gt2v0t=gt2v0,tanθ=2tanα,但α≠θ2,故B错误;平抛运动的落地时间由高度决定,与初速度无关,故C错误;速度方向与水平方向夹角的正切值tanθ=vyv0=gtv0,小球的初速度v0=gttanθ,故D错误.答案:A2.关于摩擦力做功,以下说法正确的是()A.滑动摩擦力阻碍物体的相对运动,所以一定做负功B.静摩擦力虽然阻碍物体间的相对运动趋势,但不做功C.静摩擦力和滑动摩擦力不一定都做负功D.一对相互作用力,若作用力做正功,则反作用力一定做负功解析:摩擦力可以是动力,故摩擦力可做正功;一对相互作用力,可以都做正功,也可以都做负功;静摩擦力可以做功,也可以不做功,故选项A、B、D错误,C正确.答案:C3.变速自行车靠变换齿轮组合来改变行驶速度.如图是某一变速车齿轮转动结构示意图,图中A轮有48齿,B轮有42齿,C轮有18齿,D轮有12齿,则()A.该车可变换两种不同挡位B.该车可变换五种不同挡位C.当A轮与D轮组合时,两轮的角速度之比ωA∶ωD=1∶4D.当A轮与D轮组合时,两轮的角速度之比ωA∶ωD=4∶1解析:由题意知,A轮通过链条分别与C、D连接,自行车可有两种速度,B轮分别与C、D连接,又可有两种速度,所以该车可变换四种挡位;当A与D组合时,两轮边缘线速度大小相等,A转一圈,D转4圈,即ωAωD=14,选项C对.答案:C4.已知靠近地面运转的人造卫星,每天转n圈,如果发射一颗同步卫星,它离地面的高度与地球半径的比值为()A.n B.n2C.n3-1 D.3n2-1解析:设同步卫星离地面的高度为h,地球半径为R.近地卫星的周期为T1=24hn,同步卫星的周期为T2=24h,则T1∶T2=1∶n,对于近地卫星有GMmR2=m4π2T21R,对于同步卫星有GMm′(R+h)2=m′4π2T22(R+h),联立解得h=(3n2-1)R,故D正确.答案:D5.在平直轨道上,匀加速向右行驶的封闭车厢中,悬挂着一个带有滴管的盛油容器,如图所示.当滴管依次滴下三滴油时(设三滴油都落在车厢底板上),下列说法中正确的是()A.这三滴油依次落在OA之间,且后一滴比前一滴离O点远B.这三滴油依次落在OA之间,且后一滴比前一滴离O点近C.这三滴油依次落在OA间同一位置上D.这三滴油依次落在O点上解析:油滴下落的过程中,在竖直方向上做自由落体运动,根据自由落体运动的规律可得,油滴运动的时间是相同的,在水平方向上,油滴离开车之后做匀速直线运动,但此时车做匀加速直线运动,油滴相对于车厢在水平方向上的位移就是车在水平方向上多走的位移,即Δx=12at2,由于时间和加速度都是确定不变的,所以三滴油会落在同一点,即落在OA间同一位置上,故C正确.答案:C6.一箱土豆在转盘上随转盘以角速度ω做匀速圆周运动,其中一个处于中间位置的土豆质量为m,它到转轴的距离为R,则其他土豆对该土豆的作用力为()A.mg B.mω2RC.m2g2+m2ω4R2 D.m2g2-m2ω4R2解析:设其他土豆对该土豆的作用力为F,则该土豆受到重力mg和F作用.由于该土豆做匀速圆周运动,所以这两个力的合力提供该土豆做匀速圆周运动的向心力,如图所示.根据直角三角形的关系得F=(mg)2+F2向,而F向=mω2R,所以F=m2g2+m2ω4R2,C正确.答案:C7.如图所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,B、C为水平的,其距离d=0.50m盆边缘的高度为h=0.30m.在A处放一个质量为m的小物块并让其从静止出发下滑.已知盆内侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停下的地点到B的距离为()A.0.50m B.0.25mC.0.10m D.0解析:设小物块在BC面上运动的总路程为s.物块在BC面上所受的滑动摩擦力大小始终为f=μmg,对小物块从开始运动到停止运动的整个过程进行研究,由动能定理得mgh-μmgs=0,得到s=hμ=0.30.1m=3m,d=0.50m,则s=6d,所以小物块在BC面上来回运动共6次,最后停在B点.故选D.答案:D8.如图所示,质量为m的物体(可视为质点)以某一速度从A点冲上倾角为30°的固定斜面,其运动的加速度为34g,此物体在斜面上上升的最大高度为h,则在这个过程中物体()A.重力势能增加了34mghB.动能损失了12mghC.动能损失了mghD.动能损失了32mgh解析:重力做功WG=-mgh,故重力势能增加了mgh,A错.物体所受合力F=ma=34mg,合力做功W合=-Fhsin30°=-34mg×2h=-32mgh,由动能定理知,动能损失了32mgh,B、C错,D正确.答案:D9.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为()A.n3k2T B.n3kTC.n2kT D.nkT解析:设两颗星的质量分别为m1、m2,做圆周运动的半径分别为r1、r2,根据万有引力提供向心力可得:Gm1·m2(r1+r2)2=m1r14π2T2,Gm1·m2(r1+r2)2=m2r24π2T2,联立解得:m1+m2=4π2(r1+r2)3GT2,即T2=4π2(r1+r2)3G(m1+m2),因此,当两星总质量变为原来的k倍,两星之间的距离变为原来的n倍时,两星圆周运动的周期为T′=n3kT,选项B正确,其他选项均错.答案:B10.以相同的动能从同一点水平抛出两个物体a和b,落地点的水平位移为s1和s2,自抛出到落地的过程中,重力做的功分别为W1、W2,落地瞬间重力的即时功率为P1和P2()A.若s1<s2,则W1>W2,P1>P2B.若s1<s2,则W1>W2,P1<P2C.若s1=s2,则W1>W2,P1>P2D.若s1=s2,则W1<W2,P1<P2解析:若s1<s2,由于高度决定了平抛运动的时间,所以两个物体运动时间相等.由x=v0t知:水平抛出两个物体的初速度关系为v1<v2.由于以相同的动能从同一点水平抛出,所以两个物体的质量关系是m2<m1.自抛出到落地的过程中,重力做的功W=mgh,所以W1>W2,平抛运动竖直方向做自由落体运动,所以落地瞬间两个物体的竖直方向速度vy相等,根据瞬时功率P=Fvcosα,落地瞬间重力的即时功率P=mgvy.由于m2<m1,所以P1>P2,故A正确,B错误.以相同的动能从同一点水平抛出两个物体a和b,由于高度决定时间,所以两个物体运动时间相等.若s1=s2,平抛运动水平方向做匀速直线运动,所以水平抛出两个物体的初速度相等.由于以相同的动能从同一点水平抛出,所以两个物体的质量相等.所以自抛出到落地的过程中,重力做的功相等,即W1=W2.落地瞬间重力的即时功率相等,即P1=P2,则C、D错误.故选A.答案:A二、多项选择题(本大题共4小题,每小题6分,共24分.每小题有多个选项是正确的,全选对得6分,少选得3分,选错、多选或不选得0分)11.如图所示,轻杆长为3L,在杆的A、B两端分别固定质量均为m的球A和球B,杆上距球A为L处的点O装在光滑水平转动轴上,杆和球在竖直面内做匀速圆周运动,且杆对球A、B的最大约束力相同,则()A.B球在最低点较A球在最低点更易脱离轨道B.若B球在最低点与杆间的作用力为3mg,则A球在最高点受杆的拉力C.若某一周A球在最高点和B球在最高点受杆的力大小相等,则A球受杆的支持力,B球受杆的拉力D.若每一周做匀速圆周运动的角速度都增大,则同一周B球在最高点受杆的力一定大于A球在最高点受杆的力解析:两球的角速度相同,由向心力公式Fn=mω2r可知,由于B的运动半径较大,所需要的向心力较大,而由题意,两球的重力相等,杆对两球的最大拉力相等,所以在最低点B球更容易做离心运动,更容易脱离轨道,故A正确.若B球在最低点与杆间的作用力为3mg,设B球的速度为vB.则根据牛顿第二定律,得NB-mg=mv2B2L,且NB=3mg,得vB=2gL,由v=ωr,ω相等,A的半径是B的一半,则得此时A的速度为vA=12vB=gL.对A球,设杆的作用力大小为NA,方向向下,则有mg+NA=mv2AL,解得NA=0,说明杆对A球没有作用力,故B错误.若某一周A球在最高点和B球在最高点受杆的力大小相等,设为F,假设在最高点杆对A、B球产生的都是支持力,对B球有mg-F=mω2·2L;对A球有mg-F=mω2L;很显然上述两个方程不可能同时成立,说明假设不成立,则知两球所受的杆的作用力不可能同时是支持力.对B球,若杆对B球产生的是拉力,有mg+F=mω2·2L;对A球,若杆对A球产生的是拉力,有F+mg=mω2L;两个方程不可能同时成立,所以两球不可能同时受杆的拉力.对B球,若杆对B球产生的是拉力,有mg+F=mω2·2L;对A球,若杆对A球产生的是支持力,有mg-F=mω2L;两个方程能同时成立,所以可能A球受杆的支持力、B球受杆的拉力.对B球,若杆对B球产生的是支持力,有mg-F=mω2·2L;对A球,若杆对A球产生的是拉力,有F+mg=mω2L;两个方程不能同时成立,所以不可能A球受杆的拉力,而B球受杆的支持力.综上,A球在最高点和B球在最高点受杆的力大小相等时,A球受杆的支持力、B球受杆的拉力,故C正确.当两球在最高点所受的杆的作用力都是支持力时,则对B球,有mg-FB=mω2·2L,得FB=mg-2mω2L;对A球,若杆对A球产生的是支持力,有mg-FA=mω2L,得FA=mg-mω2L,可得FA>FB,故D错误.答案:AC12.如图所示,两物块A、B套在水平粗糙的CD杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴OO1在水平面内转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B到OO1轴的距离为物块A到OO1轴的距离的两倍,现让该装置从静止开始转动,使转速逐渐增大,在从绳子处于自然长度到两物块A、B即将滑动的过程中,下列说法正确的是()A.A受到的静摩擦力一直增大B.B受到的静摩擦力先增大,后保持不变C.A受到的静摩擦力先增大后减小D.A受到的合外力一直在增大解析:在转动过程中,两物块做圆周运动都需要向心力来维持,一开始是静摩擦力作为向心力,当摩擦力不足以提供所需向心力时,绳子中就会产生拉力,当这两个力的合力都不足以提供向心力时,物块将会与CD杆发生相对滑动.根据向心力公式F向=mv2R=mω2R,可知在发生相对滑动前物块的运动半径是不变的,质量也不变,随着速度的增大,向心力增大,而向心力大小等于物块所受的合力,故D正确.由于A的运动半径比B的小,A、B的角速度相同,知当角速度逐渐增大时,B物块先达到最大静摩擦力;角速度继续增大,B物块靠绳子的拉力和最大静摩擦力提供向心力;角速度增大,拉力增大,则A物块所受的摩擦力减小,当拉力增大到一定程度,A物块所受的摩擦力减小到零后反向,角速度增大,A物块所受的摩擦力反向增大.所以A所受的摩擦力先增大后减小,再增大;B物块所受的静摩擦力一直增大,达到最大静摩擦力后不变,故A、C错误,B正确.答案:BD13.如图为过山车以及轨道简化模型,以下判断正确的是()A.过山车在圆轨道上做匀速圆周运动B.过山车在圆轨道最高点时的速度应不小于gRC.过山车在圆轨道最低点时乘客处于超重状态D.过山车在斜面h=2R高处由静止滑下能通过圆轨道最高点解析:过山车在竖直圆轨道上做圆周运动,机械能守恒,动能和重力势能相互转化,速度大小变化,不是匀速圆周运动,故A错误;在最高点,重力和轨道对车的压力提供向心力,当压力为零时,速度最小,则mg=mv2R,解得:v=gR,故B正确;在最低点时,重力和轨道对车的压力提供向心力,加速度向上,乘客处于超重状态,故C正确;过山车在斜面h=2R高处由静止滑下到最高点的过程中,根据动能定理得:12mv′2=mg(h-2R)=0.解得;v′=0,所以不能通过最高点,故D错误.故选B、C.答案:BC14.(2015·课标全国Ⅰ卷)我国发射的"嫦娥三号"登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落.已知探测器的质量约为1.3×103kg,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8m/s2,则此探测器()A.在着陆前的瞬间,速度大小约为8.9m/sB.悬停时受到的反冲作用力约为2×103NC.从离开近月圆轨道到着陆这段时间内,机械能守恒D.在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运动的线速度解析:在地球表面附近有GM地mR2地=mg地,在月球表面附近有GM月mR2月=mg月,可得g月=1.656m/s2,所以探测器落地的速度为v=2g月h=3.64m/s,故A错误;探测器悬停时受到的反冲作用力为F=mg月≈2×103N,B正确;探测器由于在着陆过程中开动了发动机,因此机械能不守恒,C错误;在靠近星球的轨道上有GMmR2=mg=mv2R,即有v=gR,可知在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度,故选项D正确.答案:BD三、非选择题(本题共4小题,共46分.把答案填在题中的横线上或按照题目要求作答.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)15.(8分)利用图甲装置做"验证机械能守恒定律"实验.图甲(1)为验证机械能是否守恒,需要比较重物下落过程中任意两点间的________.A.动能变化量与势能变化量B.速度变化量与势能变化量C.速度变化量与高度变化量(2)(多选)除带夹子的重物、纸带、铁架台(含铁夹)、电磁打点计时器、导线及开关外,在下列器材中,还必须使用的两种器材是________.A.交流电源B.刻度尺C.天平(含砝码)(3)实验中,先接通电源,再释放重物,得到图乙所示的一条纸带.在纸带上选取三个连续打出的点A、B、C,测得它们到起始点O的距离分别为hA、hB、hC.已知当地重力加速度为g,打点计时器打点的周期为T.设重物的质量为m.从打O点到打B点的过程中,重物的重力势能变化量ΔEp=__________,动能变化量ΔEk=________.图乙(4)大多数学生的实验结果显示,重力势能的减少量大于动能的增加量,原因是________.A.利用公式v=gt计算重物速度B.利用公式v=2gh计算重物速度C.存在空气阻力和摩擦阻力的影响D.没有采用多次实验取平均值的方法(5)某同学想用下述方法研究机械能是否守恒:在纸带上选取多个计数点,测量它们到起始点O的距离h,计算对应计数点的重物速度v,描绘v2h图象,并做如下判断:若图象是一条过原点的直线,则重物下落过程中机械能守恒.请你分析论证该同学的判断依据是否正确.解析:(1)在重物下落过程中,若任意两点间重力势能的减少量等于动能的增加量,则重物的机械能守恒,所以A正确.(2)打点计时器需要交流电源,测量纸带上各点之间的距离需要刻度尺,本实验需要验证的等式为mgh=12mv2,即gh=12v2(或mgh=12mv22-12mv21,即gh=12v22-12v21),所以不需要测量重物的质量,不需要天平.(3)从打O点到打B点的过程中,重力势能的变化量ΔEp=-mghB,动能的变化量ΔEk=12mv2B=12mhC-hA2T2=m(hC-hA)28T2.(4)重力势能的减少量大于动能的增加量,主要原因是重物在运动过程中存在空气阻力和摩擦阻力,选项C正确.(5)该同学的判断依据不正确.在重物下落h的过程中,若阻力f恒定,根据mgh-fh=12mv2-0?v2=2g-fmh,可知v2h图象就是过原点的一条直线.要想通过v2h图象的方法验证机械能是否守恒,还必须看图象的斜率是否接近2g.答案:(1)A(2)AB(3)-mghBm(hC-hA)28T2(4)C(5)见解析16.(8分)如图所示,在固定光滑水平板上有一光滑小孔O,一根轻绳穿过小孔,一端连接质量m=1kg的小球A,另一端连接质量M=4kg的物体B.当A球沿半径r=0.1m的圆周做匀速圆周运动时,要使物体B不离开地面,A球做圆周运动的角速度有何限制(g取10m/s2)?解析:小球A做圆周运动的向心力为绳子的拉力,故FT=mω2r.B恰好不离开地面时FT=Mg.解上述两个方程得ω=20rad/s,B不离开地面时拉力FT不大于B的重力,故A球做圆周运动的角速度应不大于20rad/s.答案:A球做圆周运动的角速度应不大于20rad/s17.(14分)据报道,人们最近在太阳系外发现了首颗"宜居"行星,其质量约为地球质量的6.4倍.已知一个在地球表面质量为50kg的人在这个行星表面的重量约为800N,地球表面处的重力加速度为10m/s2.求:(1)该行星的半径与地球的半径之比;(2)若在该行星上距行星表面2m高处,以10m/s的水平初速度抛出一只小球(不计任何阻力),则小球的水平射程是多大.解析:(1)在该行星表面处,有G行=mg行,可得g行=16m/s2.在忽略自转的情况下,物体所受的万有引力等于物体所受的重力,得GMmR2=mg,有R2=GMg,故R2行R2地=M行g地M地g行=4,所以R行R地=2.(2)由平抛运动的规律,有h=12g行t2,s=vt,故s=v2hg行,代入数据,解得s=5m.答案:(1)2∶1(2)5m18.(16分)如图所示,一长度LAB=4.98m、倾角θ=30°的光滑斜面AB和一固定粗糙水平台BC平滑连接,水平台长度LBC=0.4m,离地面高度H=1.4m,在C处有一挡板,小物块与挡板碰撞后以原速率反弹,下方有一半球体与水平台相切,整个轨道处于竖直平面内.在斜面顶端A处由静止释放质量为m=2kg的小物块(可视为质点),忽略空气阻力,小物块与BC间的动摩擦因数μ=0.1,g取10m/s2.求:(1)小物块第一次与挡板碰撞前的速度大小;(2)小物块经过B点多少次停下来,在BC上运动的总路程为多少;(3)某一次小物块与挡板碰撞反弹后拿走挡板,最后小物块落在D点,已知半球体半径r=0.75m,OD与水平面夹角为α=53°,求小物块与挡板第几次碰撞后拿走挡板(sin53°=45,cos53°=35)?解析:(1)A→C,由动能定理,得mgLABsinθ-μmgLBC=12mv2C,解得vC=7m/s.(2)小物块从A到停止,设小物块在水平台上经过的距离为s,由动能定理,得mgLABsinθ-μmgs=0,解得s=24.9m.经过B点在水平台走过一个来回的距离为s1=0.8m,ss1=24.9m0.8m=31.125,所以经过了B点n=31×2+1=63(次).(3)由几何关系,可知物块在C、D间的水平位移x=r+rcosα,竖直位移h=H-rsinα.又x=v′Ct,h=12gt2.联立以上方程,解得v′C=3m/s.由动能定理,得mgLABsinθ-(2n′+1)μmgLBC=12mv′2C,解得n′=25(次).答案:(1)7m/s(2)63次24.9m(3)25次章末复习课知识体系[答案填写]①W为正②W=0③W为负④12mv2⑤mgh⑥初、末位置⑦12mv22-12mv21主题一动能定理在多过程中的应用1.分段应用动能定理时,将复杂的过程分割成一个个子过程,对每个子过程的做功情况和初、末动能进行分析,然后针对每个子过程应用动能定理列式,然后联立求解.2.全程应用动能定理时,分析整个过程中出现过的各力的做功情况,分析每个力的做功,确定整个过程中合外力做的总功,然后确定整个过程的初、末动能,针对整个过程利用动能定理列式求解.当题目不涉及中间量时,选择全程应用动能定理更简单、更方便.【例1】如图所示,MNP为竖直面内一固定轨道,其圆弧段MN与水平段NP相切于N,P端固定一竖直挡板.M相对于N的高度为h,NP长度为s.一物块从M端由静止开始沿轨道下滑,与挡板发生一次完全弹性碰撞(碰撞后物块速度大小不变,方向相反)后停止在水平轨道上某处.若在MN段的摩擦可忽略不计,物块与NP段轨道间的动摩擦因数为μ,求物块停止的地方距N点的距离的可能值.解析:设物块的质量为m,在水平轨道上滑行的总路程为s′,则物块从开始下滑到停止在水平轨道上的过程中,由动能定理得mgh-μmgs′=0.解得s′=hμ.第一种可能:物块与挡板碰撞后,在到达N前停止,则物块停止的位置距N点的距离d=2s-s′=2s-hμ.第二种可能:物块与挡板碰撞后,可再一次滑上光滑圆弧轨道,然后滑下,在水平轨道上停止,则物块停止的位置距N点的距离为d=s′-2s=hμ-2s.所以物块停止的位置距N点的距离可能为2s-hμ或hμ-2s.答案:2s-hμ或hμ-2s针对训练1.如图所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,BC面水平,B、C距离d=0.50m,盆边缘的高度h=0.30m.在A处放一个质量为m的小物块并让其从静止下滑.已知盆内侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数μ=0.10.小物块在盆内来回滑动,最后停下来,则停的地点到B点的距离为()A.0.50m B.0.25mC.0.10m D.0解析:设小物块在BC面上运动的总路程为s.物块在BC面上所受的滑动摩擦力大小始终为f=μmg,对小物块从开始运动到停止运动的整个过程进行研究,由动能定理得mgh-μmgs=0,s=hμ=0.300.10m=3m,d=0.50m,则s=6d,所以小物块在BC面上来回运动共6次,最后停在B点,故选D.答案:D主题二功能关系的理解和应用1.几种常见功能关系的理解.功能关系 表达式 物理意义 正功、负功含义重力做功与重力势能 W=-ΔEp 重力做功是重力势能变化的原因 W>0 势能减少   W<0 势能增加   W=0 势能不变弹簧弹力做功与弹性势能 W=-ΔEp 弹力做功是弹性势能变化的原因 W>0 势能减少   W<0 势能增加   W=0 势能不变合力做功与动能 W=ΔEk 合外力做功是物体动能变化的原因 W>0 动能增加   W<0 动能减少   W=0 动能不变除重力或系统弹力外其他力做功与机械能 W=ΔE 除重力或系统弹力外其他力做功是机械能变化的原因 W>0 机械能增加   W<0 机械能减少   W=0 机械能守恒2.应用功能关系解题的步骤.(1)明确研究对象,研究对象是一个物体或是几个物体组成的系统.(2)隔离研究对象,分析哪些力对它做功,它的哪些能量发生变化.(3)根据能量的变化类型确定用哪一类功能关系去求解.(4)根据相应的功能关系列方程、求解.【例2】如图所示,在光滑水平地面上放置质量M=2kg的长木板,木板上表面与固定的光滑弧面相切.一质量m=1kg的小滑块自弧面上高h处由静止自由滑下,在木板上滑行t=1s后,滑块和木板以共同速度v=1m/s匀速运动,g取10m/s2.求:(1)滑块与木板间的摩擦力大小Ff;(2)滑块下滑的高度h;(3)滑块与木板相对滑动过程中产生的热量Q.解析:(1)对木板:Ff=Ma1,由运动学公式,有v=a1t,解得Ff=2N.(2)对滑块:-Ff=ma2.设滑块滑上木板时的速度是v0,则v-v0=a2t,v0=3m/s.由机械能守恒定律有mgh=12mv20,h=v202g=322×10m=0.45m.(3)根据功能关系有:Q=12mv20-12(M+m)v2=12×1×32J-12×(1+2)×12J=3J.答案:(1)2N(2)0.45m(3)3J针对训练2.(多选)如图所示,小球以60J的初动能从A点出发,沿粗糙斜面向上运动,从A经B到C,然后再下滑回到A点.已知从A到B点的过程中,小球动能减少了50J,机械能损失了10J,则()A.上升过程中,合外力对小球做功-60JB.整个过程中,摩擦力对小球做功-20JC.下行过程中,重力对小球做功48JD.回到A点小球的动能为40J解析:上升过程,由动能定理可知W合=0-Ek0=0-60J=-60J,故A正确;运用动能定理分析得出,小球损失的动能等于小球克服合外力做的功(包括克服重力做功和克服摩擦阻力做功),损失的动能ΔEk=mgh+fhsinθ=mg+fsinθh,损失的机械能等于克服摩擦阻力做的功,即ΔE=fhsinθ,解得ΔEkΔE=mgsinθ+ff=5,与h无关,则小球上升到最高点时,动能为0,即动能减少了60J,损失的机械能为12J,当小球返回到底端,小球又要损失的机械能为12J,故小球从开始到返回原处机械能损失24J,由功能关系知摩擦力做功Wf=-24J,因而小球返回A点的动能为36J,故B、D错误;由上述分析可知,小球上升到最高点时,动能为0,损失的机械能为12J,则重力势能增加48J,即重力做功为WG=-48J,所以下行过程中重力对小球做功48J,故C正确.答案:AC【统揽考情】本章的基本概念和基本规律较多,体现了利用功能观点分析问题的思路,该部分内容是高考的重点和热点.既有本章的单独考查,也有与电场、磁场的综合考查.高考命题的热点主要集中在动能定理的综合应用上,功能关系的综合应用每年必考,并且分值较多,大约在20分.高考题型有选择题,有综合计算题,也有实验题.【真题例析】(2015·课标全国Ⅱ卷)(多选)如图,滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上,a、b通过铰链用刚性轻杆连接,由静止开始运动.不计摩擦,a、b可视为质点,重力加速度大小为g,则()A.a落地前,轻杆对b一直做正功B.a落地时速度大小为2ghC.a下落过程中,其加速度大小始终不大于gD.a落地前,当a的机械能最小时,b对地面的压力大小为mg解析:选b滑块为研究对象,b滑块的初速度为零,当a滑块落地时,a滑块没有在水平方向上的分速度,所以b滑块的末速度也为零,由此可得b滑块速度是先增大再减小,当b滑块速度减小时,轻杆对b一直做负功,A项错误;当a滑块落地时,b滑块的速度为零,由机械能守恒定律,可得a落地时速度大小为2gh,B项正确;当b滑块速度减小时,轻杆对a、b都表现为拉力,拉力在竖直方向上有分力与a的重力合成,其加速度大小大于g,C项错误;a的机械能先减小再增大,当a的机械能最小时,轻杆对a、b的作用力均为零,故此时b对地面的压力大小为mg,D项正确.答案:BD针对训练小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短.将两球拉起,使两绳均被水平拉直,如图所示.将两球由静止释放.在各自轨迹的最低点,有()A.P球的速度一定大于Q球的速度B.P球的动能一定小于Q球的动能C.P球所受绳的拉力一定大于Q球所受绳的拉力D.P球的向心加速度一定小于Q球的向心加速度解析:根据动能定理有mgl=12mv2,得v=2gl,绳越长速度越大,则Q球速度大,故A错误;结合A项分析,动能等于mgl,因为P球质量大而绳长短,则无法确定P、Q球动能的大小关系,故B错误;在最低点,根据牛顿第二定律有T-mg=mv2l,得T=3mg,则质量大的球所受绳的拉力大,故C正确;在最低点,球的向心加速度a=v2l=2g,P、Q球的向心加速度相等,与球的质量和绳长无关,故D错误.答案:C1.(2015·四川卷)在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小()A.一样大 B.水平抛的最大C.斜向上抛的最大 D.斜向下抛的最大解析:不计空气阻力的抛体运动,机械能守恒.故以相同的速率向不同的方向抛出落至同一水平地面时,物体速度的大小相等.故只有选项A正确.答案:A2.如图所示,一半径为R、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ水平.一质量为m的质点自P点上方高度R处由静止开始下落,恰好从P点进入轨道.质点滑到轨道最低点N时,对轨道的压力为4mg,g为重力加速度的大小.用W表示质点从P点运动到N点的过程中克服摩擦力所做的功.则()A.W=12mgR,质点恰好可以到达Q点B.W>12mgR,质点不能到达Q点C.W=12mgR,质点到达Q点后,继续上升一段距离D.W<12mgR,质点到达Q点后,继续上升一段距离解析:设质点运动到半圆形轨道最低点时的速度为vN,根据牛顿第二定律,得4mg-mg=mv2NR,解得12mv2N=32mgR.从质点由静止释放到运动到最低点N,根据动能定理,得mg·2R-W=12mv2N,解得W=12mgR.从P到N和从N到Q,由于摩擦力的存在,相同高度处的速率是减小的,相同高度处的支持力变小,即对应的滑动摩擦力减小,从N到Q过程克服摩擦力做的功W′也减小,即W>W′.从N到Q利用动能定理,得-mgR-W′=EkQ-12mv2N,解得EkQ=12mv2N-mgR-W′=12mgR-W′>0,所以质点到达Q点后,还能继续上升一段距离,选项C正确,A、B、D错误.答案:C3.(多选)(2015·浙江卷)我国科学家正在研制航母舰载机使用的电磁弹射器.舰载机总质量为3.0×104kg,设起飞过程中发动机的推力恒为1.0×105N;弹射器有效作用长度为100m,推力恒定.要求舰载机在水平弹射结束时速度大小达到80m/s.弹射过程中舰载机所受总推力为弹射器和发动机推力之和,假设所受阻力为总推力的20%,则()A.弹射器的推力大小为1.1×106NB.弹射器对舰载机所做的功为1.1×108JC.弹射器对舰载机做功的平均功率为8.8×107WD.舰载机在弹射过程中的加速度大小为32m/s2解析:由题可知,舰载机弹射过程的加速度为a=v22x=8022×100m/s2=32m/s2,D项正确;根据牛顿第二定律,0.8(F发+F弹)=ma,求得弹射器的推力大小F弹=1.1×106N,A项正确;弹射器对舰载机做的功为W=1.1×106×100J=1.1×108J,B项正确;弹射过程的时间t=va=8032s=2.5s,弹射器做功的平均功率P=Wt=4.4×107W,C项错误.答案:ABD4.(多选)如图所示,小球套在光滑的竖直杆上,轻弹簧一端固定于O点,另一端与小球相连.现将小球从M点由静止释放,它在下降的过程中经过了N点.已知在M、N两点处,弹簧对小球的弹力大小相等,且∠ONM<∠OMN<π2.在小球从M点运动到N点的过程中()A.有一个时刻小球的加速度等于重力加速度B.有两个时刻小球的加速度等于重力加速度C.弹簧长度最短时,弹力对小球做功的功率为零D.小球到达N时的动能等于其在M、N两点的重力势能差解析:小球运动过程中受重力、弹簧的弹力、杆的弹力,其中杆的弹力始终垂直于杆,弹簧的弹力沿弹簧方向,当弹簧与光滑杆垂直时,小球竖直方向只受重力的作用,故加速度为重力加速度;当弹簧为原长时,小球只受重力作用,小球的加速度也为重力加速度,故A错误,B正确.当弹簧与光滑杆垂直时,弹簧长度最短,弹簧弹力与速度垂直,则弹力对小球做功的功率为零,C正确.M、N两点弹簧弹性势能相等,从M到N小球的重力势能转化为动能,则小球在N点的动能等于其在M、N两点的重力势能差,D正确.答案:BCD5.如图所示,一轻弹簧原长为2R,其一端固定在倾角在37°的固定直轨道AC的底端A处,另一端位于直轨道上B处,弹簧处于自然状态.直轨道与一半径为56R的光滑圆弧轨道相切于C点,AC=7R,A、B、C、D均在同一竖直平面内.质量为m的小物块P自C点由静止开始下滑,最低到达E点(未画出),随后P沿轨道被弹回,最高到达F点,AF=4R.已知P与直轨道间的动摩擦因数μ=14,重力加速度大小为g取sin37°=35,cos37°=45.(1)求P第一次运动到B点时速度的大小.(2)求P运动到E点时弹簧的弹性势能.(3)改变物块P的质量,将P推至E点,从静止开始释放.已知P自圆弧轨道的最高点D处水平飞出后,恰好通过G点.G点在C点左下方,与C点水平相距72R、竖直相距R.求P运动到D点时速度的大小和改变后P的质量.解析:(1)根据题意知,B、C之间的距离为l=7R-2R=5R,①设P到达B点时的速度为vB,由动能定理,得mglsinθ-μmglcosθ=12mv2B,②式中θ=37°,联立①②式并由题给条件,得vB=2gR.③(2)设BE=x,P到达E点时速度为零,设此时弹簧的弹性势能为Ep.P由B点运动到E点的过程中,由动能定理,有mgxsinθ-μmgxcosθ-Ep=0-12mv2B,④E、F之间的距离为l1=4R-2R+x,⑤P到达E点后反弹,从E点运动到F点的过程中,由动能定理,有Ep-mgl1sinθ-μmgl1cosθ=0,⑥联立③④⑤⑥式并由题给条件,得x=R,⑦Ep=125mgR.⑧(3)设改变后P的质量为m1.D点与G点的水平距离x1和竖直距离y1分别为:x1=72R-56Rsinθ,⑨y1=R+56R+56Rcosθ,⑩式中,已应用了过C点的圆轨道半径与竖直方向夹角仍为θ的事实.设P在D点的速度为vD,由D点运动G点的时间为t.由平抛运动公式,有y1=12gt2,?x1=vDt,?联立⑨⑩??式,得vD=355gR,?设P在C点速度的大小为vC,在P由C运动到D的过程中机械能守恒,有12m1v2C=12m1v2D+m1g56R+56Rcosθ,?P由E点运动到C点的过程中,由动能定理,有Ep-m1g(x+5R)sinθ-μm1g(x+5R)cosθ=12m1v2C,?联立⑦⑧???式,得m1=13m.答案:(1)2gR(2)125mgR(3)355gR13m 宜城教育资源网www.ychedu.com
免费【人教版】2017-2018学年高中物理必修二检测全集(29份)含答案试卷分析解析
宜城教育资源网免费提供课件、试题、教案、学案、教学反思设计等备课资源。数百万资源,无须注册,天天更新!
宜城教育资源网
免责声明 :本站资源版权归原著作人所有,如果我们转载的作品侵犯了您的权利,请通知我们,我们会及时删除。
宜城教育资源网主办 站长:此地宜城 邮箱:yrqsxp@163.com  QQ:290085779